logotipo renata colombia

Experiencias NREN

Telemedicine: helping reduce deaths from cancer in Asia

2017 telemedicinaGastric cancer is the deadliest form of cancer in Asia. It accounts for the deaths of some 28 men and 13 women per 100,000. In Japan, gastric cancer used to have a similar profile – number one in mortality, as well as in incidence. But now, although the incidence in Japan hasn’t changed much, mortality has fallen dramatically. The reason for this fall in mortality is simple: early diagnosis.

Japan has a diagnosis rate of some 60% – the highest in the world. And that’s the result both of sophisticated imaging technology and of better education and training for young doctors. To put it another way: the reason for high mortality elsewhere in Asia is that the cancer is often diagnosed too late for effective medical intervention.

Training young doctors to deliver better cancer medicine

The Telemedicine Development Center of Asia (TEMDEC) has been building capacity to deliver valuable technical training for cancer specialists right across the region.  Essential to this programme is TEIN, a dedicated high-capacity IP network across Asia.

Traditional training methods – physically bringing together experts and trainees – is formidably expensive – more so when the people involved are scattered across an entire continent. Too few doctors can be trained in this way, and the cost is high.

Telemedicine – the provision of healthcare at distance, using communications technology – offered the possibility of a solution. But, to be fully effective, medical training at distance requires very high resolution moving images. The technology needs to deliver video at a rate of 30 frames per second, with no stagnation or stuttering and, moreover, has to be capable of coping with communications equipment of varying quality and different types at the receiving end.

None of this would be possible without TEIN, because conventional communications setups are simply incapable of such sophistication. TEIN – with its speed and stability – provides exactly the right technical solution to this problem.

Key benefits

TEMDEC’s telemedicine project has made a major contribution to the training of oncologists to detect gastric cancer at an early stage. Many patients diagnosed early have been treated by a new and advanced procedure – endoscopic submucosal dissection – that avoids the need for major intrusive surgery, relying instead on endoscopy to access the site of the disease.

Future opportunities

With TEIN, TEMDEC project has improved outcomes for patients with other cancers, as well with a wide variety of other complicated medical conditions.

Understanding gained during this telemedicine collaboration has further stimulated development of the underlying technologies, which has gradually improved users’ experience.

At the same time, TEMDEC has now expanded its activities further in TEIN regions and beyond – into regions with substantial medical needs and relatively few healthcare facilities.

TEIN a dedicated high-capacity IP network for research and education communities in Asia

TEIN – the Trans-Eurasia Information Network – provides the dedicated, stable, high-capacity internet connectivity essential to ensuring the consistently high quality imaging necessary for medical training. It enables oncology experts from across the world to train their colleagues in real-time, using stutter-free, high-resolution imaging. TEIN offers doctors the next best thing to having the expert standing next to them in theatre or training room, guiding and educating.

TEIN does much more than help train doctors, of course. The network connects scientists and researchers across the Asia Region and, through direct connectivity with GÉANT, the pan-European network, to the entire global research and academic community.

Co-founded by the European Commission and Asian partners, and managed by TEIN*CC, the network began operating in 2000.

It provides

dedicated high capacity network for the research, scientific, education, arts and government communities across Asia

a gateway for global collaboration for more than 30 million users in the region

TEMDEC is now collaborating with 466 institutions in 57 countries, including Thailand, Vietnam, Malaysia, Singapore, Indonesia, the Philippines, India, Nepal and Australia – all countries experiencing both high prevalence and mortality rates of a range of cancers.

Source by In The Field Stories

The neural food network

2017 science nodeYou just found a great recipe for gumbo on the internet: Simple, tasty, nutritious. But it calls for alligator meat, and you’re a long way from the bayou.

You’re also not sure where you’re going to get a pound of fresh crawfish tails. But dinner needs to be on the table in an hour—what to do?

How about a deep-learning algorithm to the rescue? Researchers in Japan and the United States have trained a neural network to transform recipes from one dietary style into another, suggesting substitutions for ingredients and techniques.

Its potential applications lie far beyond convenience. The scientists who developed the algorithm hope that it may one day transform recipes for favorite foods into healthier versions—no matter where they are in the world.

“The basic motivating idea is that if one wants to change eating behavior to improve health, then people must want to eat the dishes, and this may be a culturally-defined thing,” says Lav Varshney, professor of electrical and computer engineering at the University of Illinois at Urbana-Champaign.

Map de cuisine

Varshney and his collaborators trained their neural network using nearly 40,000 recipes from the online repository Yummly.

The network learned to identify a recipe’s dominant dietary style by calculating the contribution of each its ingredients to 20 pre-selected regional cuisines, such as Thai, Russian, or Cajun Creole.

The team used word2vec, a technique common in natural language processing, that locates words in a vector space in order to extract their context. Applied to cuisine, word2vec considers recipes as sentences and ingredients as words, mapping the similarity of various ingredients.

Word2vec was then extended to incorporate countries and regions, allowing the network to calculate the analogy between countries and ingredients. It then had the capacity to answer queries such as “What French ingredient corresponds to Japanese soy sauce?”

To produce a Japanese sukiyaki in the French style, the network suggested replacing the original Japanese ingredients of soy sauce, beef sirloin, white sugar, green onions, mirin, shiitake, egg, vegetable oil, konnyaku, and Chinese cabbage with French ingredients such as Calvados, bouquet garni, fresh tarragon, and melted butter.

Keisuke Matsushima, a two-star Michelin chef who presides at an eponymous restaurant in Nice, France, prepared the recipe of sukiyaki in the French style and declared it a success.

Health and style

The final result may seem like stunt cooking with little practical application, but the researchers hope that their methods will lead to changed eating behaviors and healthier populations around the world.

As “modern” dietary styles reach into all parts of the globe, public health suffers. More than 1.3 billion people around the world are obese. Diabetes and heart disease are worldwide epidemics.

But current strategies such as taxes on soft drinks and restricting junk food advertising are not producing the desired outcomes.

“Voluntary guidelines and piecemeal nutrition initiatives have failed to create a system with the right signals, and the odds remain stacked against the achievement of a healthy, balanced diet,” says Olivier de Schutter, the United Nations Special Rapporteur on the right to food.

Previous nutrition research has determined what makes a recipe healthy. But if that recipe doesn’t appeal to an individual or a population, it won’t be adopted, no matter how great the health benefits it promises.

“The goal is to transform healthy recipes into regional cuisine styles that are more likely to be accepted by people in large populations,” says Varshney. “It could be used by people in their homes, or by chefs, or even multinational food manufacturers.”

And those alligator steaks? Not to worry: a serving of stewed crocodile contains less fat and nearly twice the protein of chicken. Maybe you should consider it as a substitute the next time you’re planning to cook up a chicken pot pie .

Source by ScienceNode

Redes Académicas de América y Europa promueven iniciativa cultural iberoamericana

2017 logo REUNA Anilla Cultural Latinoamérica-Europa es una red de colaboración en el campo de la acción cultural contemporánea, a partir del uso intensivo de las Tecnologías de la Información y Comunicación (TIC) e Internet. Está conformada por instituciones de América Latina y Europa, unidas mediante las Redes Académicas Nacionales y Regionales.

Actualmente las Redes Académicas que participan en Anilla Cultural son: REUNA (Chile), RENATA (Colombia), InnovaRed (Argentina), RNP (Brasil), CUDI (México), RAU (Uruguay), Red IRIS (España), RedCLARA (Latinoamérica) y Géant (Europa).

Arte sonoro, danza, artes visuales, performance, teatro, literatura, exposiciones y conciertos, son algunas de las múltiples iniciativas que impulsa este proyecto, dando especial importancia al debate y la experimentación, a través de encuentros virtuales (videoconferencias) y el desarrollo de mediatecas y laboratorios multimedia.

En este contexto, la participación de REUNA ha sido muy intensa desde el inicio del proyecto, en 2010. Dos años más tarde, se creó el nodo Anilla Cultural Latinoamérica-Europa en Uruguay, el cual ha impulsado algunas de las actividades más masivas realizadas a la fecha, incorporando instituciones culturales, científicas y académicas de todo el mundo.

Para Delma Rodríguez, directora del nodo uruguayo, una de las iniciativas más destacadas fue el 3º Congreso Online de Educación y Nuevos Medios, realizado en 2016 y que contó “con 1.500 personas conectadas en salas ubicadas en República Dominicana, México, Colombia, Perú, Chile, Argentina, Uruguay, España y Suiza (y que fue transmitido vía streaming por REUNA)”. En el ámbito científico y tecnológico, destacan la conformación de la Red de Amigos del CERN en LAC, y el ciclo

“(Neutrinos y +)”, donde REUNA interconectó diferentes centros científicos como ALMA, CERN, IceCube en la Antártida, Auger Mendoza y Angra Neutrino Project, entre otros.

Actualmente, los integrantes de Anilla Cultural, liderados por el nodo en Uruguay, se encuentran trabajando en el proyecto “MuRe: museografía en Red”, cuyo objetivo es la generación de un circuito expositivo en Internet, en torno a objetos patrimoniales. Los museos, centros culturales, instituciones y personas que participan no coexisten geográficamente, pero sí habitarán juntos el mismo espacio y tiempo virtual, a través de la conexión entre ellos y con el público, vía videoconferencia.

Para concretar este proyecto “se ha conformado un equipo de trabajo transnacional entre Redes Académicas como REUNA, RAU, RENATA, CUDI y la Anilla Uruguay. En pocos meses se ha generado un intenso trabajo de colaboración y experimentación, con el fin de crecer juntos e innovar en formatos culturales e interactivos a través de redes de Internet avanzado”, destaca Delma, como ejemplo de cooperación entre los distintos equipos humanos detrás de cada Red involucrada.

Para más información, visite:



Fuente: REUNA

El uso de la videoconferencia para capacitaciones médicas a través de la Red Nacional de Educación e Investigación (RNIE) mexicana

2017 caso CUDIMas de 1000 médicos fueron capacitados a distancia en 2015 en un solo evento gracias a la tecnología de videoconferencia de alta definición y a las redes académicas avanzadas en México. Escrito por José Luis Rodríguez, Jefe del Departamento de Comunicaciones Audiovisuales de la Dirección General de Computo en la Universidad Nacional Autonóma de Mexico, y coordinador del Grupo de Videoconferencia en CUDI.

Durante la XLIII Reunión de la Asociación Mexicana de Endoscopía Gastrointestinal  (http://www.amegendoscopia.org.mx), se realizaron una serie de cirugías en vivo desde el Instituto Nacional de Cancerología en la ciudad de México (http://www.incan.salud.gob.mx/), localizada en la parte central de la región, y fueron transmitidas al centro internacional de convenciones de Mazatlán, sede de la reunión nacional, ubicada a unos 800 Kms., al noroeste del país. El objetivo de esta transmisión fue integrar un grupo de médicos especialistas en el área para realizar cirugías en vivo que demostrarán los avances en procedimientos endoscópicos a los participantes en la sede remota.

La transmisión en calidad de alta definición, necesitó un ancho de banda simétrico de entre 6 y 10 Mbps.  Con la finalidad de garantizar el servicio se integró un equipo de trabajo, con los responsables técnicos de las instituciones participantes,  en colaboración  con el personal del Centro de Operaciones de la Red de CUDI (NOC-CUDI),  también se realizaron las configuraciones de red para que el servicio de videoconferencia funcionara en la RNIE con calidad de transmisión en alta definición de 1080p de punta a punta, utilizando un canal de conexión de 6 Mbps.

Adicional a la red de banda ancha, se utilizaron equipos de videoconferencia de última generación en ambos puntos que permitieran el manejo de señales de entrada y salida en alta definición. En el lado emisor: se recibió la señal de los dispositivos médicos y del lado receptor se entregó a los sistemas de proyección multimedia las señales en alta definición, ambas en formato 1080p (Full HD) usando interfaces HDMI.

Hasta hace unos años, no se podría imaginar una capacitación a distancia en alta definición como la obtenida en la reunión de la Asociación Mexicana de Endoscopía Gastrointestinal, esto solo era posible con tecnologías costosas y utilizando videoconferencia en definición estándar, similar al video en formato VHS.

"Esto no hubiera sido factible sin la participación de la Comunidad de Salud, el Grupo Técnico de Videconferencia y el NOC - CUDI quienes trabajaron coordinadamente con el equipo japonés de la Universidad de Kyushu, líderes  del Proyecto TEMDEC y con el Instituto Nacional de Cancerología que proporcionó los quirófanos ambulatorios para los pacientes que fueron intervenidos y en donde se realizó la conectividad para transmitirla a Mazatlán mediante la RNEI mexicana", indicó Salma Jalife coordinadora en CUDI.

El equipo de trabajo de CUDI obtuvo una gran experiencia para lograr la transmisión de señales de alta definición (similar a Bluray) usando la infraestructura de las redes avanzada así como los codificadores de video (H.323) de última generación. De esta forma, la RNEI mexicana pone estas tecnologías a disposición de sus miembros para el beneficio de sus instituciones y de la actividad académica en México.

Fuente: CUDI

A brief history of the internet

2017 IoTFrom its start as a Cold War defensive measure to the cat video sharing phenomenon that steals our time today, the internet has come a long way baby!

February 7, 1958 was the day Secretary of Defense Neil McElroy signed Department of Defense Directive 5105.15. His signature launched the Advanced Research Projects Agency (ARPA), now known as the Defense Advanced Research Projects Agency (DARPA). The creation of the agency is an important moment in science history because it led to the creation of the internet we recognize today.Courtesy Arturo Contreras.

The Cold War was in full swing in the 1950s, and the US was worried about the Soviet Union’s growing scientific prowess. Because of Sputnik 1, launched in 1957, the US military was concerned about the Soviet Union attacking from space and destroying the US long-distance communications network.

The existing national defense network relied on telephone lines and wires that were susceptible to damage. In 1962, J.C.R. Licklider, a scientist from ARPA and MIT, suggested connecting computers to keep a communications network active in the US in the event of a nuclear attack.

This network came to be known as the ARPA Network, or ARPAnet. Packet switching made data transmission possible in 1965, and by 1969, military contractor Bolt, Beranek, and Newman (BBN) developed an early form of routing devices known as interface message processors (IMPs), which revolutionized data transmission.

The Stanford University Network was the first local area network connecting distant workstations. In 1981, the NSF expanded ARPAnet to national computer science researchers when it funded the Computer Science Network (CSNET). BBN assumed CSNET operation management in 1984.

ARPAnet adopted the transmission control protocol (TCP) in1983 and separated out the military network (MILnet), assigning a subset for public research. Launched formally as the National Science Foundation Network (NSFNET) in 1985, engineers designed it to connect university computer science departments iacross the US.

"ARPAnet's transition to the open networking protocols TCP and IP in 1983 accelerated the already burgeoning spread of internetworking technology," says Stephen Wolff, principal scientist with Internet2. "When NSF's fledgling NSFNET adopted the same protocols, ARPAnet technology spread rapidly not only to university campuses across the USA to support the higher education community, but also to emergent Internet Service Providers to support commerce and industry."

The NSFNET eventually became a linked resource for the five supercomputing centers across the US, connecting researchers to regional networks, and then on to nearly 200 subsidiary networks. NSFNET took on the role of internet backbone across the US, with ARPAnet gradually phased out in 1990.

1991 saw a major step forward in internet communications. Tim Berners-Lee created the hypertext transfer protocol (http) a standardization that gave diverse computer platforms the ability to access the same internet sites. For this reason, Berners-Lee is widely regarded as the father of the world wide web (www).

The Mosaic web browser, created in 1993 at the National Center for Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign, was a key development that emerged from the NSFNET. Mosaic was the first to show images in line with text, and it offered many other graphical user interface norms we’ve come to expect today (like the browser’s URL address bar and back/forward/reload options for viewing webpages.)

Eventually the NSFNET modified its acceptable use policy for commercial use, and by 1995, it was decommissioned. Soon, the internet provider model created network access points that allowed the for-profit, commercial side of the internet to be developed.

The internet went from being an obscure research idea to a technology that is used by over 3.2 billion people in less than sixty years.

Computer science has moved fast, but hold on tight, you can be sure it’s not done evolving.

Source: ScienceNode

Hola mensaje
Hello modal box